W zderzających się galaktykach maluszek świeci najjaśniej

W pobliskiej galaktyce Wir (M51a), oraz jej galaktycznej towarzyszce, M51b, dwie supermasywne czarne dziury rozgrzewają się i pochłaniają otaczającą materię. Te dwa potwory powinny być najjaśniejszymi źródłami promieniowania rentgenowskiego w zasięgu pola widzenia, ale nowe badania wykorzystujące obserwacje z misji NuSTAR (Nuclear Spectroscopic Telescope Array) pokazują, że o wiele mniejszy obiekt konkuruje z nimi pod tym względem.

Najbardziej oszałamiający cechami galaktyki Wir – oficjalnie znanej jako M51a – są dwa długie, wypełnione gwiazdami „ramiona” wijące się jak wstążka wokół galaktycznego centrum. O wiele mniejsza M51b przylega do krawędzie Wiru. Razem znane jako M51, obie galaktyki łączą się.

W centrum każdej galaktyki znajduje się supermasywna czarna dziura, milion razy masywniejsza, niż Słońce. Połączenie się galaktyk powinno wepchnąć ogromne ilości gazu i pyłu w czarne dziury i na orbitę wokół nich. Z kolei silna grawitacja czarnych dziur powinna sprawić, że orbitująca materia będzie się nagrzewać i promieniować, tworząc wokół siebie jasne dyski, które mogą przyćmić blaskiem wszystkie inne gwiazdy w ich galaktykach.

Ale żadna czarna dziura w czasie łączenia się nie promieniuje tak jasno w zakresie promieniowania rentgenowskiego, jak spodziewali się tego naukowcy. Na podstawie wcześniejszych obserwacji z satelitów, które wykrywają promieniowanie X o niskiej energii, naukowcy uważali, że warstwy gazu i pyłu wokół czarnej dziury w większej galaktyce blokują dodatkową emisję. Ale w nowym badaniu wykorzystano widzenie w wysokich energiach promieniowania X satelity NuSTAR, aby spojrzeć pod te warstwy i odkryto, że czarna dziura jest jeszcze ciemniejsza, niż się spodziewano.

Naukowcy uważają, że najbardziej prawdopodobne wyjaśnienie jest takie, że czarne dziury „mrugają” podczas łączenia się galaktyk, a nie promieniują mniej lub bardziej stałą jasnością podczas całego procesu.

Małe źródło promieniowania rentgenowskiego to gwiazda neutronowa, niesamowicie gęsta bryła materii pozostawiona po wybuchu masywnej gwiazdy pod koniec jej życia. Typowa gwiazda neutronowa ma setki tysięcy razy mniejszą średnicę, niż Słońce i raz do dwóch razy większą masę. Łyżeczka materii gwiazdy neutronowej ważyłaby 1 mld ton.

Pomimo swoich rozmiarów, gwiazdy neutronowe często ukazują się dzięki intensywnym emisjom promieniowania. Gwiazda neutronowa znaleziona w M51 jest jeszcze jaśniejsza od przeciętnej i należy do nowo odkrytej klasy, znanej jako ultra świecące gwiazdy neutronowe. Murray Brightman z Caltech powiedział, że niektórzy naukowcy proponowali, że silne pola magnetyczne generowane przez gwiazdę neutronową mogą być odpowiedzialne za emisję promieniowania; poprzednie prace Brightmana i współpracowników na temat tej gwiazdy neutronowej potwierdzają tę hipotezę. Niektóre inne jasne, wysokoenergetyczne źródła promieniowania rentgenowskie widoczne w tych dwóch galaktykach mogą również być gwiazdami neutronowymi.

Opracowanie:
Agnieszka Nowak

Źródło:
JPL

Dodaj komentarz

This site uses Akismet to reduce spam. Learn how your comment data is processed.